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Goals of the course

* Discuss some fundamental theory of image processing and (data) analysis.

* Put that theory in action using Python.

scikit-image
iaf

numpy
scipy
pandas
Matplotlib

https://python.org

https://docs.conda.io/en/latest/miniconda.html
[open source]

* Analyze the data from some fictitious drug discovery study.

* Solve a graded homework.


https://python.org/
https://docs.conda.io/en/latest/miniconda.html

https://ia-res.ethz.ch/courses/iaf

Image Analysis Fundamentals

Aaron Ponti

Fall 2024
A hands-on introduction to the fundamental tools and concepts of scientific image analysis.

Course material

The complete course material can be found on https://ia-res.ethz.ch/courses/iaf. Please, make sure to download and extract
https://ia-res.ethz.ch/courses/iaf/iaf.zip ahead of the course.

Course Program

First day: Theoretical session [BSS E 23]

= Quick and partial theoretical introduction to the main concepts of the course.
= Course text: Theory.pdf.

Second day: Practical session /I [BSS E 23]

= Introduction to Python and the basics of Image Processing in Python.
— Course text: Python.pdf, chapters 2 - 6.
— Code: download from course site.
= Analysis of data from a (fictitious) drug discovery study (part |: image processing).
— Assignment: Analysis_Hands_On.pdf.
— Dataset: plate01.zip.

Third day: Practical session /Il [BSS E 23]

= Introduction to simple data analysis.
— Course text: Python.pdf, chapter 7

= Analysis of data from a (fictitious) drug discovery study (part Il: data analysis).
— Assignment: Analysis__Hands_On.pdf
— Dataset: your results from the previous day.

Homework

At the end of the second day of the course, you will receive an exercise to solve and submit for review. The assignment (and
its submission deadline) will be posted on https://ia-res.ethz.ch/courses/iaf.

Required hardware/software

For this course, you are expected to use your own laptop (Windows, macOS and Linux will all do). Also, you are expected
to install the required software in advance:

= Python: installation instructions can be found in Python.pdf, chapter 1.2.
= Make sure to set up the iaf-env conda environment as explained in chapter 1.4.

Required reading in the preparation of the course

Before Practical Sessions | (day 2) and Il (day 3) you are required to read Python.pdf. It is also recommended to read
Theory.pdf, since it elaborates on the topics from the slides.



https://ia-res.ethz.ch/courses/iaf

Introduction



Digital image processing

IlDigitaI image processing is any form of signal processing for
which the input is an image, such as a photograph or video
frame; the output of image processing may be either an
image or a set of characteristics or parameters related to

t h eim age . source: https://en.wikipedia.org/wiki/Digital_image_processing
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Quantitative image analysis

\

Features

http://imagescience.org/meijering/publications/download/spm2012.pdf



Registration
* Stitching (M)
 Alignment (Z/C/T)

Restoration

* Deconvolution

* Background subtraction
* Distortion correction

Enhancement

* Contrast enhancement
* Denoising

* Filtering

e 2D images: XY

* 3D stacks: XYZ
Multi-channel: XY(Z)C

* Time series: XY(Z)(C)T
«  Multi-tile: MXY(Z)(C)(T)

Geometry

Segmentation

* Simple thresholding
* Histogram-based

* Clustering-based

* MlL-based

Feature
extraction

Binary operations

* Morphological operations
* Watershed

v Feature
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Object features

Estimate
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Image processing classes

We can roughly organize the plethora of image processing algorithms
in a few broad classes:

* Image enhancement

* Image restoration

* Image registration

* Image segmentation and classification
* Motion estimation and tracking

* Image compression

* Image visualisation



Image enhancement

The often-subjective manipulation or transformation of an image with the aim of increasing its
usefulness or visual appearance.

Point-wise image operations, histogram operations, spatial and frequency domain filtering, pseudo-coloring.
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Image restoration

The modeling of the degradation an image is subjected to, and the removal of this degradation
based on an optimality criterion.

Noise smoothing, deconvolution, error concealment, inpainting, super-resolution, reconstruction from projections.

Deconvolution of cell-cell junctions of MDCK cells. MDCK (Madin-Darby Canine Kidney) cells cultured for 3 days, were stained for p120-catenin
(mCherry - red) and Claudin3 (EGFP-green) and imaged with a Nikon Ti widefield microscope (Objective 40x; 1.3 NA oil lens). Shown are a single
slice of the original z-stack either background-corrected (left) or deconvolved with Huygens (right).

Image acquired by Dr. Johan de Rooij, Hubrecht Institute, Utrecht, The Netherlands (source: http://www.svi.nl)



http://www.svi.nl

Image registration

The process of transforming different sets of data into one coordinate system. Data may be
multiple photographs, data from different sensors, times, depths, or viewpoints.

Intensity-based, feature based, spatial domain methods, frequency domain methods (phase correlation), single-modality, multiple-modality.

Image courtesy: Pierre Meister, FMI
http://www.xuvtools.org



Image segmentation and classification

The division of an image into constituent, “meaningful” regions and the successive
characterization of those regions.

Edge segmentation, thresholding, histogram-based segmentation, region growing, splitting and merging, watershed, K-means algorithms,
convolutional neural networks (e.g., U-Net), statistical methods, supervised classification.

r

x 1 ilastik - fhome/fanna/new.ilp - Object Classification (Ffrom prediction image)
Project Settings View Help
Project Metadata

Input Data

Threshold and Size Filter

Object Feature Selection

to compute many features at once,
so we recommend to select many
features at this step and do an
additional subset selection step

in the next applet.

Select Features

0 features computed,
some may have multiple channels

Object Classification
Blockwise Object Classification

Batch Inputs

Prediction Output Locations

Object centers a=100.0%
. ]
)

-100.0%

@  Binary image a=100.0
) ]
@ Raw data a=100.0%
| ]
&% &

http://www.ilastik.org



Motion estimation and tracking

The process of determining motion vectors that describe the transformation from one image to
another; can also apply to extracted objects (tracking).

Phase correlation, block matching, optical flow, object tracking, single-particle tracking.

Richard Szeliski. Tracking swimming algae in Bitplane Imaris.
Computer Vision: Algorithms and Applications.
http://szeliski.org/Book/



lmage compression

The minimization of the number of bits in representing an image, either in a lossless or lossy

fashion.
Huffman, arithmetic coding, dictionary methods, PCM, DPCM, JPG, MPEG.

4K 2160p @ 24 fps uncompressed ~600 MB/s (~4.8Gbit/s)

4k 2160p @ 24 fps compressed (YouTube, Netflix) ~3.12 MB/s (25Mb/s) (Netflix 4k requirements)

Beware the difference:

+ Lossless compression is a class of data compression algorithms that allows the original

data to be perfectly reconstructed from the compressed data.

+ Some lossless file formats: TIFF, PNG, and all microscopy vendor proprietary formats (ND2, CZI, LIF,
LSM, STK, ...)

+ Lossy compression permits reconstruction only of an approximation of the original data,

though this usually improves compression rates (and therefore reduces file sizes).
+ Some lossy file formats: JPEG, JPEG2000; for video: MPEG-1/2/4, H.264, H.265.

» For scientific (quantitative) purposes, only use lossless compression!



Image visualization

The transformation, selection, or representation of data from simulations or experiments, with
an implicit or explicit geometric structure, to allow the exploration, analysis, and

understanding of the data.
Volume rendering, MIP rendering, surface rendering.

Volume rendering , Surface rendering

E. coli Segmentation

https://stat.duke.edu/research/software/west/celltracer/examplel.html

Rendering of derived measurements along with the data

http://www.bitplane.com



At the beginning of our analysis workflow...

Signhals



Signals

* A function containing information about some phenomenon of interest.

f(t)

Time (s)
A guantity exhibiting variation in time and/or space.

No variation — No information



Analog and digital signals (1D)

Analog-to-digital converter

Acoustic signal Electric signal ...0110101011...
(continuous) (continuous) (discrete)

1D



Analog and digital signals (1D)

Digital-to-analog converter

Transducer

..0110101011... Electric signal Acoustic signal
(discrete) (continuous) (continuous)

1D



A/D conversion

» Analog-to-digital conversion is a 2-step process:

« Sampling: converts a continuous signal into a discrete one

* Quantization: discretizes the amplitude of the signal.



Sampling

Time sampling with interval A T
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The continuous signal (blue) is measured at discrete time intervals (red dots).



Quantization

also €O
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The continuous signal (blue) at discrete time intervals is approximated to a
fixed number of discrete values (magenta crosses).



Analog and digital signals (2D)

Electromagnetic waves

(continuous) o
\ Analog camera (with film) (Analog) CRT monitor

4 '
.B_//\ %‘—A/D—-—D/A 1 o
\ Y : \ Y : EM waves
(continuous)
Digital camera Digital monitor

Fluorescence

2D




Sampling and quantization (2D)

MxN Digital image

Sampling Quantization
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T / f(xy) =10, ..., 255}
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2D and 3D images
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Digital image concepts

Sampling - Resolution

Number of pixels used to represent the original signal
(e.g., 512 x 512).

Quantization - Bit depth
Number of bits used for quantization - number of
gray levels in an image (e.g., 8 bits > 28 = 256 levels)

Number of image channels
An image can have one or more channels (e.g.,
intensity (gray-value), composite, or RGB image).




Sampling — spatial resolution

256 x 256 128 x 128

32 x 32 16 x 16



Quantization — grayscale resolution

256 levels (8 bit) 64 levels (6 bit)
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Resolution summary

+++ - |ncreasing Spatial Resolution=—
Digital Camera System
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Discrete signal (notation)

jue of x at position (ny n,)
vad

x(ny, n2)$/

tized version of ]




Systems

e.
Input s/ Output

l

x(ny, n,) y(ny, ny) =T[x(ny, n,)]
Transformation
Examples: inversion (8 bit)

y(nll n2) =255 - X(nll nZ) F/

y(ny, ny) = median(N(x(ny, n,)))

T

A neighborhood of a given position (pixel) x(n4, n,)



Systems

e.g., a digitd! image

Input s/ Output

l l

X(n4, N5) T[] y(ny, ny) = Tlx(ny, ny)]

T[] can be any sort of transformation (system) of the input signal x(n;, n,).

We will now consider a family of systems with following properties:
* Linearity

e Spatial (shift) invariance



Why focusing on LSI systems?

* LSI systems:

 describe processes involved in image formation, particularly in the
microscope (continuous LS| systems);

 are the foundation of image processing operations that we can
perform on our images (discrete LS| systems).

Keep this in mind when you go to the microscope!

Try to link what’s coming in the next slides to what happens
to the fluorescence of your samples in the microscope.




Linear systems a, az: Weign's

Xy, X2 signals
If T: system

then T[] is linear.

(tranSformaﬂon)

The transformed version of a weighted sum of signals is the same as the
weighted sum of the signals transformed individually.

(Alternatively, a linear system can be decomposed into constituents that are
processed independently, and the result combined in the end.)



Shift-invariant systems

Given:

T[X(nlr nZ)] = Y(n1; nz)

If ky, Ko shifts

then T[] is shift-invariant.

If the input is shifted by a given amount, the output will be shifted by the same amount.

(Or, the location of the origin of the coordinate system is irrelevant.)



Discrete Unit Impulse

(1, or ny =ng =0
d (n1,ng) = 4 / ! ’

\ 0, otherwise

5 (nl, ng)
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Linear Shift-Invariant systems

Unit impulse Impulse response
l of the LSI system
8(nlr nZ) h(nll nZ)




Oy, “‘
Unit impulse N QX\; Impulse response
l of the LSI system

|

S(nlr nZ) h(n1’ nz)
we can measure it!
X(n]_l nz) y(nl’ nz)

The system response to the unit impulse is all we need to fully describe the LSI system.




Impulse response

Convolution l

X(ny, n,) y(ny, ny)

LS| systems can be described and efficiently implemented by the
mathematical operation of convolution.

A

[ y(ni,ns) = x(ni,na) C:k) h(ni,ns) }

oo oo

y (n1,n2) = x (n1,n2) ® h (n1,n2) Z Z x (ki,k2) h(ny — k1,ne — k2)

k‘]_——OOkQ——OO



Convolution (1D example)
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Linear Shift-Invariant systems

6(nll n2) h(nll nZ)
ofofo]|o0]|oO ofo|lo0]|O0]oO
ofofo]|o0]|oO ofo|1]0]0
ofof1]0]0O0 of1(1]1]0
ofofo]|o0]oO ofo|1]0]0
ofofo]|o0]oO ofo|lo0o]|O0]oO

Impulse signal Impulse response function



Linear Shift-Invariant systems

X(nll nz) shift invariance y(nll n2)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 LSI 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y(n1,n2) = xr(ni,n2) ® h(ng, na)

Each 9 in the input signal gets its own response, and the shape of each response
is independent of the location of the d function in the input.




Linear Shift-Invariant systems

X(ny, ny) Linear (combinatio") y(ny, ny)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 LSI 0 0 1 2 2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The output signal is formed as a linear combination (i.e., weighted sum) of
spatially-shifted impulse response functions.




discrete signals:



Digital image

A digital image is a numeric representation of a continuous 2D or 3D signal.

Digital Sampling Pixel Quantization
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Data types

=7
* Integers: 0, 13, -14378, ... 1 )
g 3 bits: 8 values (23) 111111117 255
00 — 0 8 bits (1 byte): 256 values (28)
o | black 0l — 1 16 bits (2 bytes): 65536 values (216)
1 bit: 1 ite 10 — 2 v
v 11 — 3
n bits: 2" values; n: bit depth
range: 0~ (2"~ 1)
* Floating-point numbers: 3.21, -0.001, 3.4€7, ... 00000000000000000000:2.5
0-10000000-010
Precision Sign Exponent Mantissa Total Range Precision
Single 1 8 23 32 1.1773% — 3.403% 1.19°7
Double 1 11 52 64 2.227308 _ 180308 292216

. . . precision at 1.0
Floating point numbers approximate real numbers.



Color lookup tables (LUT)

* In biomedical imaging it is common to apply false colors while retaining
the original intensity content (i.e., signal strength).

o 74 V-

P i

Colored SEM image of soybean cyst nematode and egg. The color makes the image
easier for non-specialists to view and understand the structures and surfaces revealed in
micrographs.



Color lookup tables (LUT)

 Color can also be used to convey a visual meaning to the values or

measurements in the image. |

E2175299R783
E2175299R784
E217S300R787
E217S300R786
E217S300R785
E2175299R782
E1115150R567
E2025185R546
E2025196R564
E2025188R552
E111S150R568
E2028185R545
E1998255R449

E1995255R448
E1995255R450
E2025192R557
E202S190R553
E1115150R566
E1448184R737
E2025186R548
E2025186R549
E2025186R547
E2025192R556
E2025188R550
E2025192R558
E202S185R544
E202S5188R551
E2025196R563
E1445184R738
E2025196R562
s E2025194R560
Response-locked Stimlus-locked E2025190R554
E2025190R555
E202S5194R561
E2025194R559

Differences in blood and oxygen levels in Etessz52R190
1895232R386
the brain shown by fMRI maps.
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Heat map generated from DNA microarray data reflecting
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Multichannel images

Multi-channel images are common in scientific applications, for instance in light microscopy
acquisitions. Each intensity channel is assigned a different color and then merged into a composite.

Fluorophore 3




RGB

The RGB color model is an additive color model in which Red, Green, and Blue components are
added together in various proportions to reproduce a broad array of colors.
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Image histogram

The histogram counts the number of pixels in the image that have a certain value.

Pixel intensity Number of pixels
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i ith intensity
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Image histogram
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Histogram comparisons

The shape of the histogram
can quickly reveal how the
image looks like.

* If the histogram
concentrates on the left,
the image will be rather
dark.

* If the histogram is skewed
toward the right, the
image will be rather light. 2500

* A nicely spread histogram
gives a nice contrast.

0 100 200

0 100 200



Fundamentals of image processing

In image processing, an input image is subjected to a transformation or passed
through a system T to deliver an output image.

“Transformation”
“System”

T[] can act:

* on each pixel independently (point transformations)
* on a pixel “neighborhood” (e.g., filters, morphology)
* on the whole image (e.g., Fourier transform)



Point operations: Image negative

A point operation on a digital image is a function applied independently to every pixel in the
image to create a new, modified image. _

Input Transformation
For an 8-bit image, the image negative replaces each pixel value x(n;, n,) by 255 - x(n;, n,).
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Point operations: full-scale histogram stretch

The full-scale histogram stretch (or contrast stretch) is a linear operation that expands the
image histogram to cover the entire data type range.
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Point operations: arithmetic operations

Arithmetic operations are point operations (i.e., pixel-wise) defined on multiple images.
Images can be added, subtracted, multiplied, divided, ...

. ise
image = signal * nots

Example: Image averaging

Images that suffer from low signal-to-noise ratio (SNR) can profit from averaging.



Point operations: arithmetic operations

Example: Image masking

Whole-cell mask Nucleus mask Cytoplasm mask

Cytoplasm mask Original image Masked image



Pixel neighborhoods

Transformations or systems can work on pixel neighborhoods. That is, the effect of the
transformation on a pixel is not just a function of the pixel itself, but of several neighboring ones.
Commonly and less commonly used neighborhoods are 4-, 8- and 6-connected (quite rare) in two
dimensions and 6-, 18- and 26-connected neighborhoods in three dimensions.

computer 9ame>

4-connected 8-connected 6-connected
(2D) (2D) (2D)

6-connected 18-connected 26-connected
(3D) (3D) (3D)



(Convolution) kernels

An extension of the neighborhood is the kernel (also called convolution matrix). The kernel is a
(small) matrix of numbers (weights) that is used in convolution (filtering).

3x3 kernel 5x5 kernel

Convolution

kernel

y(ni,ne) = x(ni,na) ®[h(n1, ng)]

A kernel does not only define which neighbor pixels are important for the transformation, but
also gives them individual weights.



Filtering



Filtering

* Filtering is used for smoothing an image, i.e., suppressing image
irregularities and noise while preserving signal as much as possible.

* In image processing, filtering is performed either in the spatial
domain or in a transform domain.

* The term spatial domain refers to the image plane itself, and spatial filtering
directly manipulates the pixels in the image.

* A transform domain first converts the image into a different representation,
that is then manipulated before an inverse transform brings the result back
into the spatial domain.

* One very important transform domain is the frequency domain.



Spatial filtering

* A spatial filter consists of a neighborhood and a predefined
operation applied to each pixel position in the input image to deliver
a result to be stored at corresponding pixel position in the output
image.

* If the operation applied to the neighborhood is linear (i.e., is
composed of multiplications and sums only), then the filter is called a
linear spatial filter.

* Otherwise, the filter is non-linear.



Linear filters through convolution

* Linear filters in the spatial domain are implemented via the operation
of convolution.

* Given an image f(x, y) of size A x B and a kernel (or mask) h(x, y) of
size C x D, the convolution is defined as:

M~—1N-1

f(x,y) ® h(z,y) AINZme n)h(x —m,y —n)

m=0 n=0

*M=A+C—-1and N=B+ D-1 give the full convolution result.

* In practice, the borders with partial kernel support are discarded, and
the central A x B pixels of the convolution results are preserved.

* The size of the kernel defines the support of the filter.
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Linear filters: kernel size

The size of the kernel defines the support of the filter. Large kernels will have a stronger filtering
effect on the image than corresponding kernels of smaller size.

3x3 filter

7x7 filter 15x15 filter




Linear filters: average filter

The average filter calculates for each pixel (x, y) in the input image the average of all pixel
intensities in the neighborhood and stores this value at the same position (x, y) in the target

image.
é(f(af—1,y—1)+f(:v—1,y)+f(fﬂ—1,y+1)+f(w,y—1)+---+f(£v+1,y)+f(33+1,y+1))
weights
af o1 1] L L 1
ﬂ ]_ o ? ? If'the wiights ar: .
h=5- |LAD 1] = % 7 9 it
L1 1 5 5 3. |
fix,y)

3x3 filter




Linear filters: Gaussian filter

In contrast to the average filter, the Gaussian filter can better be adapted to preserve features of
a given scale (or size). The weights of the Gaussian kernel are calculated as follows:

[0.0030 0.0133 0.0219 0.0133 0.0030]
0.0133 0.0596 0.0983 0.0596 0.0133
hz,y) =e 32 h= [0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030  0.0133 0.0219 0.0133 0.0030

5x5 Gaussian filter, o=1




Segmentation



Segmentation

Segmentation is one of the most fundamental image processing techniques. Its practical goal
is to extract interesting parts from an image for subsequent analysis and operations.

More precisely, segmentation partitions a digital image into segments (also called super-
pixels) that are homogeneous in some characteristics (such as brightness, color, texture,
motion, ...).

Segmentation is usually the first step of a series of operations performed in the analysis of an
image.

Segmentation is used to locate objects or their boundaries.

There is no general solution to the image segmentation problem.

There are dozens of approaches to segmentation. One goes from the simplest forms of
thresholding all the way to (deep) neural network algorithms through histogram-based

methods, clustering methods, edge detection, watershed transforms, region growing, level
sets, statistical methods, ...



mentation
simplest 5€9

Thresholding ~

Thresholding is most commonly and effectively applied to images that can be characterized as
having bimodal histograms (e.g., light objects against a dark background). Individual pixels in an
image are marked as object pixels if their value is greater than some threshold value t.

1, of [ (z,y) >1
0, of [ (x,y) <t
Background (0)

B(IB,Q]) —

Object (1)

t
—>

How can we
estimate a

reasonable
value for t?

Original image 1(x,y) Binary image B(x,y)

(ideal, noise-free)



one of many algorithms

lterative Thresholding

Iterative thresholding is a very simple algorithm that works pretty reliably without much
external tuning and is rather robust against noise.

Algorithm:

Choose an initial threshold ¢, either randomly or according to any method desired
Segment the image I into two sets:

- G = {I > t}

- Gy ={I <t}
Calculate the average of each set:

— my = mean (G1)

— mgo = mean (Gy)
Update the threshold ¢ as the average of m; and my

-t = (m1+m2)/2
Repeat steps 2 - 4 until the new threshold ¢ matches the one in the previous iteration
(i.e., the algorithm has converged)



Iterati
ive Thresholding s
ackground pixel

slightly noisy iM39°




Histogram-based segmentation

Histogram-based segmentation uses the distribution of the pixel intensities to segment the image.
To be more precise, it uses the shape of the histogram to locate the clusters in the image. In the
case of a noise free image with two peaks (modes) in the histogram, the selection of the threshold
is trivial.

5000

4000

3000

2000

T
1

1000

1 1
0 50 100 150 200 250

|deal, noise-free image Image histogram




Histogram-based segmentation

In the case of moderate noise but still with two clear peaks (modes) in the histogram,
the selection of the threshold is easy.

1500

1000 |

500 -

0 50 100 150 200 250

Low-noise image Image histogram



Histogram-based segmentation

In the case of very noisy images, it is not longer clear where the threshold should be.

High-noise image
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Otsu’s method

One common algorithm for histogram-based segmentation is Otsu’s method. The algorithm assumes that the
image to be thresholded contains two classes of pixels (e.g., foreground vs. background) then calculates the
optimum threshold separating those two classes so that their combined spread (intra-class variance) is minimal.

t—1 L
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Filtering to the rescue

yay!

Segmentation

»
L

' Gaussian filter

»

(Otsu)

restored pimodality

</

I 00000 ]
Intensity (unweighted) 0 255

How does the Gaussian
filter know what is the
underlying signal
distribution?



more classes!
k-means clustering -~

k-means clustering aims to partition n observations into k clusters (in N dimensions) in which each
observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.

2D example




Background subtraction




Background subtraction




Background subtraction m

000000

000000

000000

000000

our cells

Otsu’s threshold

The image background is not flat!




e Acquire a background image and subtract it from the image to correct
* Estimate the background from the image itself and subtract it:

* Rolling ball algorithm

* Morphological opening

* Low-pass filter with large Gaussian kernel

In all estimation cases, the trick is to use an area (or kernel) that is larger than the details in the
image (i.e., the cells), thus leaving an estimate of the background that can be subtracted.



Vignetting

Many microscopy images suffer from uneven illumination of the field, with poorer illumination at the image
periphery. This so-called vignetting problem is due to factors in the microscope light path, such as limitation in
the lenses or in the camera. The vignetting effect becomes particularly evident when 2D or 3D tile images are
stitched together.

Taken with modifications from https://svi.nl/Vignetting.



Connected components

* The result of a segmentation is usually a binary image with all pixels belonging to
the background set having value 0 and those belonging to the foreground set
having value 1.

* For analysis purposes, we want to break the foreground set into individual
objects (spatially separate), using a connected component algorithm.

* We can now extract features from these objects for further analysis.




Morphological operations



Watershed

Often, objects in an image that are close to each other are difficult to segment and are fused into
individual blobs in the binary image.

The watershed segmentation algorithm makes use of the shape of the objects to separate them.



Watershed

* The idea behind watersheds is to transform the binary image into a 3D
landscape, where the new pixel value corresponds to the landscape elevation.

* In a rainy day, we can define three sets of points in this landscape:
1. points at a regional minimum

2. points where a raindrop would slide down towards one and only minimum
(catchment basin or watershed for each minimum)

3. points where a raindrop would be equally likely to fall to more than one such
minimum (divide lines of watershed lines).

3

e Watershed lines




Watershed

* The principal idea of the watershed
transform is to find the watershed

lines. water level
h=40

e Algorithm:
* a hole is punched at each of the
local minima in the topographic

surface

* the entire topography is flooded h=90
from below by letting water raise
through the holes at constant rate.

* when the rising water from distinct
catchment basins is about to merge,
a dam is built to prevent the
merging. h=160

* the flooding will eventually reach a
stage where only the tip of the dams
will be visible above the water level:
the dams represent our watershed
lines (and the catchment basins our
final segmentation).

Intensity

X https://imagej.net/plugins/classic-watershed



Watershed

* How do we generate a useful topographical surface from a black-and-white mask?
* The intensity at each position (x, y) of the distance transform of a binary image is the distance
of that pixel from the closest background pixel, if the pixel is a foreground pixel; or O if it is a

background pixel.
* The distance between any two pixels p; and p, can be calculated for instance as:

_ N2 L (o 2
Dy, ps = (\/(*1‘2 21)? + (Y2 — y1)?) Euclidean distancé

Overlapping objects Distance transform




Watershed

Since the watershed algorithm starts flooding the topology from local minima, we
invert the distance transform so that the local maxima become local minima.

If we now apply the watershed algorithm, we can easily separate the touching
objects.

Inverted distance transform Separated objects

watersheds

minimd

watershed line



Watershed

Often, objects in an image that are close to each other are difficult to segment and are fused into
individual blobs in the binary image.

After watershed, the objects are separated.

me
Wy we can measure °0
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*  Deconvolution
*  Background subtraction
. Distortion correction

* 2Dimages: XY

* 3D stacks: XYZ
Multi-channel: XY(Z)C

e Time series: XY(Z)(C)T

e Multi-tile: MXY(Z)(C)(T)
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Registration
*  Stitching (M)
«  Alignment (Z/C/T)

*  Contrast enhancement
. Denoising
e  Filtering

Segmentation
*  Simple thresholding

¢ Histogram-based
¢ Clustering-based
¢  MlL-based

[Binary operations]
*  Morphology
¢ Watershed
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