Module iaf.fit.models
Implementation of simple models.
Functions
def exponential_model(x: numpy.ndarray, a: float, b: float)
-
Exponential model
y_hat = a * exp(b * x)
.Parameters
x
:np.ndarray
- Independent variable.
a
:float
- Scaling parameter of the exponential
a * exp(b * x)
. b
:float
- Scaling parameter of independent variable in the exponential
a * exp(b * x)
.
Returns
y_hat
:np.ndarray
- Predicted
y
values.
def linear_model(x: numpy.ndarray, a: float, b: float)
-
Linear model
y_hat = a * x + b
.Parameters
x
:np.ndarray
- Independent variable.
a
:float
- Slope of the line
ax + b
. b
:float
- Intercept of the line
ax + b
.
Returns
y_hat
:np.ndarray
- Predicted
y
values.
def logarithmic_model(x: numpy.ndarray, a: float, b: float)
-
Logarithmic model
y_hat = a + b * ln(x)
.Parameters
x
:np.ndarray
- Independent variable.
a
:float
- Intercept value of the logarithmic model
a + b * ln(x)
. b
:float
- Scaling parameter of independent variable in the logarithmic model
a + b * ln(x)
.
Returns
y_hat
:np.ndarray
- Predicted
y
values.
def square_root_model(x: numpy.ndarray, a: float, b: float)
-
Square root model
y_hat = a + b * sqrt(x)
.Parameters
x
:np.ndarray
- Independent variable.
a
:float
- Intercept value of the square root model
a + b * sqrt(x)
. b
:float
- Scaling parameter of independent variable in the square root model
a + b * sqrt(x)
.
Returns
y_hat
:np.ndarray
- Predicted
y
values.