Module iaf.fit.models

Implementation of simple models.

Functions

def exponential_model(x: numpy.ndarray, a: float, b: float)

Exponential model y_hat = a * exp(b * x).

Parameters

x : np.ndarray
Independent variable.
a : float
Scaling parameter of the exponential a * exp(b * x).
b : float
Scaling parameter of independent variable in the exponential a * exp(b * x).

Returns

y_hat : np.ndarray
Predicted y values.
def linear_model(x: numpy.ndarray, a: float, b: float)

Linear model y_hat = a * x + b.

Parameters

x : np.ndarray
Independent variable.
a : float
Slope of the line ax + b.
b : float
Intercept of the line ax + b.

Returns

y_hat : np.ndarray
Predicted y values.
def logarithmic_model(x: numpy.ndarray, a: float, b: float)

Logarithmic model y_hat = a + b * ln(x).

Parameters

x : np.ndarray
Independent variable.
a : float
Intercept value of the logarithmic model a + b * ln(x).
b : float
Scaling parameter of independent variable in the logarithmic model a + b * ln(x).

Returns

y_hat : np.ndarray
Predicted y values.
def square_root_model(x: numpy.ndarray, a: float, b: float)

Square root model y_hat = a + b * sqrt(x).

Parameters

x : np.ndarray
Independent variable.
a : float
Intercept value of the square root model a + b * sqrt(x).
b : float
Scaling parameter of independent variable in the square root model a + b * sqrt(x).

Returns

y_hat : np.ndarray
Predicted y values.